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INTRODUCTION  

Tidal marshes are crucial in maintaining ecosystem balance, providing significant 
ecological benefits. As one of the most efficient ecosystems in carbon sequestration, tidal marshes 
can absorb carbon dioxide from the atmosphere and store it in biomass and soil, directly aiding 
climate change mitigation (Hilmi et al., 2021;  Mcleod et al., 2011). In addition, tidal marshes serve 
as natural filters that strip water of pollutants, sediments, and excessive nutrients, thereby 
maintaining water quality and supporting aquatic life (Mitsch et al., 2015). Vegetation in tidal 
marshes also protects the shoreline from erosion by stabilizing the soil and reducing the impact 
of tidal currents and ocean waves (Barbier et al., 2011). These ecosystems also provide rich 
habitats for various species, supporting biodiversity and fisheries productivity (Alongi et al., 
2016). Therefore, the conservation and restoration of tidal marshes is crucial in the face of climate 
change and environmental degradation. 

Tidal marshes are vital ecosystems essential in maintaining environmental balance, 
especially in coastal areas such as Lampung Province. Tidal marshes can sequester carbon, critical 
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ABSTRACT 
Tidal marshes play a vital role in coastal ecosystems, functioning in climate 
change mitigation, water filtration, and protection from coastal erosion. 
However, mapping and monitoring of these ecosystems is often hampered by 
difficult accessibility and dynamic environmental conditions. This study aims 
to improve tidal marsh classification accuracy by applying a Random Forest 
(RF) algorithm supported by Sentinel-2A satellite imagery. This image 
provides various spectral parameters and vegetation indices, including B1, 
GNDVI, BSI, and NDWI. Three RF models with varying parameters were tested 
to determine their effectiveness in tidal marsh classification. The model with 
26 parameters (Model 3) performed best, with the lowest RMSE value of 0.22, 
the highest AUC of 0.87, and the highest overall accuracy of 95%. These 
results show that combining critical spectral parameters in the RF model can 
significantly improve the classification accuracy and biomass estimation in 
tidal marshes. This study also confirmed the effectiveness of Random Forest 
in addressing the challenges of high-accuracy mapping and monitoring. These 
findings provide a solid foundation for tidal marsh ecosystem conservation 
and management applications and support the application of machine 
learning in coastal ecosystem mapping for better and more accurate results. 
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in mitigating global climate change. In addition, this ecosystem also functions in flood control, 
water filtration, and protection against coastal erosion. Tidal marshes are also important habitats 
for various species of flora and fauna, making them a center of biodiversity in coastal Lampung. 
These ecological benefits play a direct role in maintaining the welfare of local communities who 
depend on these ecosystems for livelihoods such as fisheries and agriculture and untapped 
ecotourism potential. 

In Lampung, tidal marshes exhibit unique characteristics shaped by the region's specific 
tidal patterns, vegetation composition, and climatic conditions. The interplay of seasonal rainfall 
and tidal cycles significantly affects sedimentation, nutrient flow, and vegetation growth, making 
the ecosystem highly dynamic. In certain areas, mangroves, salt marshes, and mudflats form a 
complex mosaic, providing crucial habitats for various aquatic species and supporting fisheries 
that local communities rely on. 

However, mapping and monitoring of tidal marshes in Lampung faces various challenges. 
Hard-to-reach geographical conditions and tidal variability make access and monitoring difficult. 
In addition, seasonal changes in land conditions also make accurate mapping difficult. Additional 
threats come from ecosystem degradation caused by land conversion for agriculture or 
plantations, urbanization, and climate change impacts that worsen the stability of these 
ecosystems. Mapping and monitoring tidal marshes face various challenges related to 
accessibility and dynamic environmental conditions. Tidal marshes are often located in hard-to-
reach areas, and unstable terrain conditions make conventional mapping difficult and expensive 
(Kuenzer et al., 2011). In addition, seasonal and climatic changes can affect land conditions, 
making consistent mapping challenging (Mahdavi et al., 2018). The need for accurate and up-to-
date data also adds to the difficulty of effectively monitoring these ecosystems. Therefore, 
innovative and more accurate approaches are urgently needed to ensure proper mapping and 
management of tidal marshes.  

Remote sensing, mainly using satellite imagery such as Sentinel-2A, has opened up new 
opportunities for mapping and monitoring tidal marsh ecosystems. This technology enables data 
collection with high spatial and temporal resolution, covering large areas with significant detail 
(Drusch et al., 2012). The multispectral imagery produced by Sentinel-2A enables the 
identification and mapping different vegetation types and land conditions in tidal marshes 
(Gascon et al., 2017). Sentinel-2 has the advantage of ample area coverage and high revision 
frequency with medium spatial resolution. Sentinel-2's advantages lie in its free data and broad 
spectral coverage, with 13 bands useful for various applications such as vegetation, water, and 
soil monitoring. Sentinel-2 is ideal for large-scale and periodic analysis. At the same time, 
PlanetScope and WorldView are more suitable for studies that require very high spatial 
resolution and detailed analysis at the local or small object scale. Remote sensing also allows real-
time monitoring of ecosystem changes, which is crucial for conservation efforts (Kuenzer et al., 
2011). As such, it provides a solution to the limitations of traditional mapping methods and 
supports more effective conservation efforts. 

Machine learning algorithms, especially Random Forest (RF), have proven effective in 
improving the accuracy of satellite image classification and mapping. RF can handle complex and 
balanced datasets (Breiman, 2001), making it particularly useful in wetland mapping, including 
tidal marsh. The algorithm can process various features from satellite imagery to produce more 
accurate classifications and address noise in the data, which supports better ecosystem 
management (Belgiu & Csillik, 2018). Previous research have shown the potential of using RF and 
Sentinel-2A imagery in ecosystem mapping. This research has successfully applied RF for highly 
accurate vegetation classification and land condition identification (Rodriguez-Galiano et al., 
2012). In addition, Sentinel-2A offers high-resolution multispectral data that is very useful in 
ecosystem analysis (Immitzer et al., 2016). However, there is still a need for further research 
focusing on mapping tidal marsh, which is the main objective of this study. 

Given the importance of tidal marshes in climate change mitigation and biodiversity 
conservation, the need for more accurate and efficient mapping methods is increasingly urgent. 
Conventional methods are often unable to capture the complexity of these ecosystems with 
sufficient accuracy (Kuenzer et al., 2011). Although several studies have shown the great 
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potential of using machine learning algorithms such as Random Forest in ecosystem mapping, 
especially using Sentinel-2A satellite imagery, some gaps still need to be fully addressed. One of 
the main gaps is the need for more research focusing on tidal marsh ecosystems in some coastal 
regions, such as Lampung Province, which has its ecological uniqueness. Most existing research 
focuses more on terrestrial ecosystems or other coastal areas, so approaches specific to the 
Lampung region still need to be expanded.  

This research offers novelty by focusing specifically on tidal marsh ecosystems in 
Lampung Province, which have yet to be extensively studied despite their ecological and socio-
economic importance. While previous studies have predominantly explored tidal marsh mapping 
in other regions or have generalized their methodologies, this study emphasizes Lampung's 
unique environmental and tidal characteristics. Additionally, this research combines the Random 
Forest algorithm with Sentinel-2A imagery, a combination that has yet to be explicitly applied to 
tidal marshes in Lampung. Integrating high-resolution multispectral data with advanced machine 
learning techniques is expected to overcome existing challenges in mapping dynamic tidal 
environments, providing more accurate and up-to-date data. Therefore, this study contributes 
significantly to regional-specific research on tidal marshes in Lampung and the broader field of 
machine learning applications in ecosystem mapping. In addition, while the Random Forest 
algorithm has proven effective in satellite image classification, previous studies have yet to fully 
explore its potential in dealing with the dynamic complexity of tidal marshes affected by seasonal 
changes and varying environmental conditions. Another gap is the limitation of conventional 
methods in monitoring these ecosystems in real-time and accurately, especially in areas that are 
difficult to access. Therefore, this research seeks to address these gaps by developing a more 
accurate mapping model using the Random Forest algorithm and Sentinel-2A imagery, which is 
expected to provide more detailed and relevant mapping results to support the conservation of 
tidal marsh ecosystems in Lampung. 

Therefore, this study aims to develop a more accurate classification model for tidal marsh 
classification using the Random Forest algorithm with the support of Sentinel-2A imagery. With 
this model, a more detailed and precise mapping of tidal marshes is expected, which can be used 
as a basis for decision-making related to the conservation and management of this ecosystem 
(Rodriguez-Galiano et al., 2012). This research is expected to contribute significantly to 
developing machine learning-based ecosystem mapping methodologies, particularly in tidal 
marsh conservation.  
 

METHODS 
Research Design 

The research was conducted in Lampung Province with an astronomical location of 
105024”63’E – 105049”52’E and 5036”39’S – 5037”10’S located on the East and South Coast of 
Lampung Province. The selection of research sites should consider ecosystem diversity, data 
availability, local support, and relevance to environmental policy. This location was chosen 
because Lampung Province has the second longest coastline in Sumatra. This length of coastline 
provides a large and diverse area for studying coastal ecosystems and their interactions with the 
marine environment (Figure 1). 
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Figure 1. Study Area 

 

The image pre-processing stage begins with radiometric correction to reduce the effects of 
atmosphere, sensor, and uneven illumination so that the digital value at each pixel accurately 
represents the reflection of objects on the Earth's surface. This involves atmospheric correction 
to reduce light scattering and absorption and sensor correction to address variations in sensor 
sensitivity. Next, geometric correction is performed to correct spatial distortions caused by 
sensor movement, topography, or viewing angle, using Ground Control Points (GCPs) to make the 
geographical position of each pixel more accurate. After that, the image was cropped according 
to the specific research area using geographical coordinates in the Lampung Limur and South 
Lampung regions, focusing on particular ecosystems such as mangroves and tidal swamps. The 
final stage was the removal of clouds and cloud shadows, which are often the central interference 
in optical remote sensing, with cloud masking techniques, such as using the Sen2Cor algorithm, 
to ensure that cloud-covered areas do not affect the analysis results. Data processing is done using 
ArcGIS Pro 3.3, which uses a machine learning-based classification process. 

Machine learning (ML) provides computers with the capability to learn from data and 
experiences similarly to how the human brain operates. The primary objective of ML is to develop 
models that can self-train to enhance their understanding, recognize intricate patterns, and solve 
new problems based on historical data (Çelik, 2018). ML enables computers to conduct advanced 
analyses autonomously by continuously learning and adapting to the complexity of problems and 
the evolving need for flexibility (Alzubi et al., 2018; Breiman, 2001). The research flow is 
described in Figure 2.  
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Figure 2. Classification workflow using RF classifier 

 

The greater the impact, the more influential the variable. Determining variable importance 
uses the absolute value of the regression coefficient, where the more significant the coefficient 
value, the more outstanding the contribution of the variable to the biomass estimate for each one-
unit change in the variable. In this study, determining variable importance does not only use one 
model using a specific data set in each method (Behera et al., 2021; Bhatnagar et al., 2020). The 
final prediction in the RF classifier method is made by voting with predictions from many decision 
trees. For classification tasks, the majority vote is considered as the final prediction. Improving 
processing effectiveness in classification is critical to understanding how each variable affects the 
outcome. The variable importance level, permutation importance (PI) value, or mean decrease 
accuracy (MDA) value determines the variable's contribution to the classification result. The 
more critical a variable is, the greater its permutation value. The importance of a variable 
increases as the accuracy decreases (Rodriguez-Galiano et al., 2012). 

 
Variable Importance =  OOB permutation –  OOBbas                                                                     (1) 

  
OOB permutation measures variable importance by permuting variable values on data not 

used in tree building. Out-of-bag basic (OOBbas) is a measure of variable importance without 
permutation. Counting instances of a variable in a group of decision trees is a simple method to 
determine the relevance of a variable—the importance of a variable increases with its influence. 
When determining a variable's relative relevance, the regression coefficient's absolute value is 
used; the higher the coefficient value, the more significant the contribution of the variable in 
question to the biomass estimate for each unit change in that variable. The method used in 
sampling was purposive random sampling (Elmahdy et al., 2020). Samples taken in purposive 
random sampling are based on considerations of built-up land development to consider the 
samples taken to represent the study area. The sample points obtained were used for training 
areas and accuracy tests. Sample selection was done by considering local knowledge and field 
checks.  

The calculation of training data was done using the following formula by Tridawati et al. 
(2020):  

n = 
𝑁

1+N ×(𝑒)2        (2) 
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The variables are defined as follows: n represents the number of samples, N denotes the 
number of populations, and e is the margin of error (percentage of allowance for the accuracy of 
sampling errors that are still acceptable). Determining the number of testing points in this study 
refers to the approach by Fitzpatrick-Lins (1981) in Tridawati et al. (2020) commonly used to 
test the accuracy of remote sensing data classification results. The following is a formula for 
obtaining the minimum amount of testing data in the classification process: 

 

N = 
𝑍2(p)(q)

𝐸2    (3) 
 

p represents the anticipated accuracy percentage, while qqq is calculated as 100−p100 - p100−p. 
The symbol EEE denotes the permissible margin of error, and ZZZ is equal to 2, derived from a 
standard deviation of 1.96 at a 95% confidence level. The ratio of the data in modeling is 70% 
Training Data and 30% Testing Data, with a total number of samples of 200 sample points and 
testing data of 60 sample points. 

Before classifying species using the RF classifier algorithm, parameters related to 
identifying species are extracted to obtain accurate classification results. Parameter testing is 
done by analyzing the correlation between the parameters used. 
1. Calculating OOB permutation where each variable permuted the values of that variable in 

OOB data and recalculated the model error (OOB permutation). 
2. Calculating the variable importance value  

The more significant the difference between OOB permutation and OOBbas, the more 
influential the variable is. The RF classifier algorithm model is based on several parameters and 
is categorized into three classification models. The distribution of sample points is presented in 
Figure 3. 

 

Figure 3. Classification workflow using RF classifier 
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Model 1 used 15 parameters, including various vegetation indices and bands from 
Sentinel 2A, such as GNDVI, NDWI, SAVI, band 7 to band 9, NDMI, BSI, and TSAVI. Model 2 
expanded the number of parameters to 20 by adding band 4 from Sentinel 2A and four additional 
bands from the Spectroradiometer (band 1 to band 4). Model 3, the most comprehensive, uses 26 
parameters by adding more bands from the Spectroradiometer (band 5 to band 9). These 
parameters include various indices used to measure vegetation health, moisture, and the 
presence of bare soil, as well as multiple wavelengths from the electromagnetic spectrum used 
by Sentinel 2A and the Spectroradiometer. The use of 3 scenario models using a combination of 
the number of parameters according to Table 1 is based on the permutation importance (PI) value 
analysis results. This determines the critical parameters that allow us to focus on them in model 
training, which can improve model performance and efficiency. The RF classifier classification 
model for mangrove, tidal marsh, and seagrass is presented in Table 1.  

 
Table 1. Classification model using RF classifier 

Model Number of 
parameters 

Layer (parameter) 

Model 1 15 GNDVI, NDWI, SAVI, B 7 (Sentinel), B8 (Sentinel), B 8A (Sentinel), B 6 
(Sentinel), B 9 (Sentinel), NDMI, BSI, B 5 (Sentinel), B 2 (Sentinel), B 
1 (Sentinel), B 3 (Sentinel), TSAVI 

Model 2 20 GNDVI, NDWI, SAVI, B 7 (Sentinel), B8 (Sentinel), B 8A (Sentinel), B 6 
(Sentinel), B 9 (Sentinel), NDMI, BSI, B 5 (Sentinel), B 2 (Sentinel), B 
1 (Sentinel), B 3 (Sentinel), NDMI, BSI, B 5 (Sen), B 2 (Sen), B1 
(Spectro), B2 (Spectro), B3 (Spectro), B4 (Spectro), B5 (Spectro), B6 
(Spectro), B7 (Spectro), B8 (Spectro), B8A (Spectro), B9 (Spectro) 

Model 3 26 GNDVI, NDWI, SAVI, B 7 (Sentinel), B8 (Sentinel), B 8A (Sentinel), B 6 
(Sentinel), B 9 (Sentinel), NDMI, BSI, B 5 (Sentinel), B 2 (Sentinel), B 
1 (Sentinel), B 3 (Sentinel), NDMI, BSI, B 5 (Sen), B 2 (Sen), B 1 (Sen), 
B 3 (Sen), TSAVI, B4 (Sen), B1 (Spectro), B2 (Spectro), B3 (Spectro), 
B4 (Spectro), B5 (Spectro), B6 (Spectro), B7 (Spectro), B8 (Spectro), 
B8A (Spectro), B9 (Spectro) 

.  

Performance Evaluation of Classification Models 
Area Under the Curve (AUC) and Receiver Operating Characteristic (ROC) are commonly 

used performance evaluation metrics in ML, especially binary classification. They are often used 
to evaluate how much a classification model can distinguish between two classes. The ROC curve 
is a graphical representation that illustrates a model's performance across different decision 
thresholds by depicting the relationship between the True Positive Rate (TPR), also known as 
Sensitivity, and the False Positive Rate (FPR) (Forouzannia & Chamani, 2022; Kubben et al., 
2019). The AUC serves as a quantitative metric to evaluate how well the model can differentiate 
between positive and negative classes. A high AUC value reflects a high level of sensitivity and a 
low level of specificity, indicating good performance (Forouzannia & Chamani, 2022; O’Connell et 
al., 2017). The equation that can be used for the calculation is:  

 
TPR=TP+FNTP           (4) 
FPR=FP+TNFP           (5) 

 
The AUC, or Area Under the Curve, quantifies the area beneath the ROC curve. AUC values 

range from 0 to 1, with an AUC of 0.5 suggesting that the model's performance is equivalent to 
random guessing, while an AUC of 1 indicates that the model perfectly distinguishes between 
positive and negative classes. In contrast, AUC values close to 1 indicate that the model is excellent 
in classification (Kubben et al., 2019). Obtain the positive prediction probability of the model for 
each example in the test data. Then, various thresholds are determined to classify the 
probabilities into positive or negative classes. Perform TPR and FPR calculations for each decision 
threshold. The Area Under the Curve (AUC) is determined by measuring the area beneath the ROC 
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curve, which can be calculated using various numerical methods or by summing the areas of small 
trapezoids under the curve (Kubben et al., 2019). The AUC is derived from the model's specificity 
and sensitivity, which reflect the model's success in classifying suitable or unsuitable habitats. 
AUC values greater than 0.9 are considered excellent, values between 0.8 and 0.9 are very good, 
values from 0.7 to 0.8 are satisfactory, and values below 0.7 indicate poor discriminatory ability 
(Muhamad et al., 2021). 
 

Accuracy Test of Classification Results 
The semi-empirical approach uses field parameter data measured from a specific tool and 

estimated using a particular method, so it is an indirect measurement in the field. This approach 
requires the selection of representative sample locations and an even distribution of sample 
values for modeling purposes and accuracy testing of modeling results (Kamal et al., 2020). 
Thematic information from image classification results needs to be assessed for its information 
content's accuracy, therefore, an accuracy test is necessary to assess whether the data is suitable 
for use (Talukdar et al., 2020). 

The method used to assess accuracy is the confusion matrix test. The confusion matrix is 
often used to measure accuracy in data mining concepts or decision support systems. Overall 
classification accuracy is obtained by dividing the number of correctly classified sample points 
(i.e., the sum of all diagonal cells in the matrix) by the total number of sample points (Danoedoro 
& Murti, 2021). The samples used for instructions and the samples used for the accuracy test are 
not the same but are taken in different places to make them more acceptable (Karang et al., 2024). 
The statistical equation for the confusion matrix test is presented as follows: 

 

Kappa statistic = 
 Nσi=1nXii−Σi=1nXi+(X+i) 

N2−Σi=1nXi+(X+i)
 𝑥 100% 

 

(6) 

Overall Accuracy = 
∑ Xii 𝑛

𝑖 = 1

𝑁
 𝑥 100% (7) 

User Accuracy =  
Xii 

𝑋 + 𝑖
 𝑥 100% (8) 

Producer Accuracy = 
Xii 

𝑋 + 𝑖
 𝑥 100% (9) 

 
N represent the total number of pixels used for observation. Xii denotes the diagonal value of the 
contingency matrix at row and column. X+i is the total number of pixels in column, and Xi+ is the 
total number of pixels in row i. 
 
RESULTS AND DISCUSSION 

Variable Importance Analysis of Tidal Marsh Classification Models 

The variable importance analysis illustrates various parameters' contributions in the tidal 
marsh's three classification models. In Model M1, several variables showed a high level of 
importance. Variable B1 (0.87) has the highest importance, followed by GNDVI (0.82) and BSI 
(0.80). This shows that specific spectral parameters such as B1, GNDVI, and BSI highly influence 
this classification model. In the M2 model, the variables GNDVI (0.74) and BSI (0.70) remain 
prominent, showing the consistent importance of these two variables in the various models. In 
addition, variables such as NDWI (0.60) and TSAVI (0.44) also show values of meaningful 
importance in this model. In the M3 model, NDWI has the highest importance (0.86), showing the 
significant influence of this parameter in the classification. In addition, the variables GNDVI (0.67) 
and BSI (0.68) also remain essential in this model, consistent with the results from models M1 
and M2. Some additional variables, such as SPB1 to SPB9, have lower importance values, 
indicating that they are less influential in the classification process than the main spectral 
variables. This analysis shows that spectral variables such as B1, GNDVI, BSI, and NDWI are 
essential in tidal marsh classification. The PI values of the tidal marsh classification model are 
described in Table 4.  
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Table 2. PI value of tidal marsh classification model 

No Parameter Model 1 Model 2 Model 3 

1 B1 0.87 0.63 0.48 

2 B2 0.64 0.69 0.41 

3 B3 0,52 0.51 0.51 

4 B4 - 0.51 0.73 

5 B5 0.69 0.60 0.56 

6 B6 0.56 0.63 0.57 

7 B7 0,59 0.55 0.58 

8 B8 0.57 0.56 0.51 

9 B8A 0.66 0.49 0.50 

10 B9 0.56 0.57 0.57 

11 GNDVI 0.82 0.74 0.67 

12 SAVI 0.62 0.55 0.42 

13 TSAVI 0.77 0.44 0.51 

14 NDWI 0.73 0.60 0.86 

15 NDMI 0.60 0.50 0.58 

16 BSI 0.80 0.70 0.68 

17 SPB1 - 0.19 0.11 

18 SPB2 - 0.16 0.10 

19 SPB3 - 0.20 0.06 

20 SPB4 - 0.16 0.11 

21 SPB5 - - 0.07 

22 SPB6 - - 0.07 

23 SPB7 - - 0.09 

24 SPB8 - - 0.09 

25 SPB8A - - 0.11 

26 SPB9 - - 0.05 

The variable importance of the tidal marsh classification model is presented visually in Figure 4. 

 
Figure 4. Variable importance of tidal marsh classification model (a) model 1; (b) model 2; (c) model 3  
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The consistent importance of these variables in the various models suggests that they are 
vital factors influencing classification results, while SPB variables have a lesser contribution. They 
are mapping the distribution of salt marsh species Zhang et al. (2021) by integrating optical 
(Sentinel-2) and SAR (Sentinel-1) images using spectral features, NDWI, VI, red edge index, and 
Backscattering. Combining temporal spectral features with spatial-temporal features from SAR 
data enhances the ability to distinguish between objects. Compared to optical or SAR data alone, 
integrating both data types increases the kappa coefficient by 0.10-0.19 and improves overall 
classification accuracy by 6.04-11.61%. The most significant variables in this improvement are 
the MASVI and NDVI indices. 
 
Tidal Marsh Classification 

Based on the classification results of tidal marsh ecosystems analyzed using the RF 
classifier algorithm with several parameters, it shows that the level of detail of tidal marsh object 
information is better. This classification uses a decision tree (number of trees) of 100 with data 
division into 70% for training and 30% for testing. Tidal marsh classification based on O’Connell 
et al. (2017) explained that NDWI is suitable for identifying pre-tidal conditions because it follows 
phenological parameters like NDVI. The findings in this study show that the variables with the 
highest importance values are GNDVI and NDWI. GNDVI and NDWI, with their sensitivity to 
vegetation and moisture variations, are critical in detecting and classifying the various 
components in this environment. This makes them of high importance in tidal marsh research 
and mapping. 

In addition, Zhu et al. (2020) classified Kandelia candle and Sonneratia apetala species. 
Meanwhile, the findings of this study can classify low-density vegetation, medium-density 
vegetation, high-density vegetation, mangrove species A. lanata, A. marina, R. mucronata, S. alba, 
tidal marsh, ponds, sea, water bodies, and settlements which also obtained relatively high 
accuracy results. This is due to the parameters used, one of which is in situ spectral 
measurements. Thus, based on the results of this study and previous research, the RF algorithm 
is efficient enough to classify mangroves.  

The east coast region has many mangrove plants in Merak Belantung Village. It has 
mangroves that grow lushly. Mangroves also grow in good condition around the Tarahan PLTU 
area, but the population is small. Furthermore, the classification of tidal marshes carried out is on 
the part of the land connected to the sea, adjacent to the estuary; this area is strongly influenced 
by saltwater/sea tides with characteristics of fine sandy beaches and waves directly reaching the 
shoreline. The results showed that unvegetated mud flats are immersed in this estuary area at 
low tide and will appear at high tide. This area usually has a higher topography, with some/all of 
it still inundated by the tide. The species in the swamp are dominated by A. marina and S. alba 
mangrove species. The tidal marsh in the study area is located at the mouth of the Way 
Sekampung River in Kuala Jaya Village, which has a large area with a thick, muddy bottom. 

Based on Thomas et al. (2019) the RF algorithm can represent multiple spectral classes, 
which helps combine heterogeneous pixels of many species into one class. This approach to 
observing coastal wetlands can be easily applied in any coastal region worldwide. The results of 
the tidal marsh ecosystem classification are presented visually in Figure 5. 
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Figure 5. Tidal marsh ecosystem classification results (a) model 1, (b) model 2, (c) model 3  
 

Comparison with the results of Forouzannia dan Chamani. (2022) explained that most of 
the suitable habitats for A. marina are scattered along the banks of the tributaries entering into 
the estuary, while the suitable habitats for R. mucronata are mostly scattered on the bottom of 
the main tributaries in the part of the estuary that leads to the sea. The results showed that R. 
mucronata tended to form mangrove line structures along the tributaries entering the estuary. At 
the same time, R. apiculata preferred the seaward side of the existing mangrove patches and was 
threatened by sea level rise. Rahmawati et al. (2022) classified mangroves with species of S. alba, 
R. stylosa, R. mucronata, A. marina, Bruguiera gymnorrhiza, and several other species.  

For the classification evaluation using RF, the analysis approach includes determining the 
model's goodness based on RMSE. The data were divided into two parts: training data and testing 
data. The evaluation results showed that the model with parameters using index transformation 
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gave the lowest RMSE, so this model was selected as the best model for biomass estimation. The 
RMSE values of tidal marsh estimation models are described in Table 3. 

 
Table 3. The RMSE values of tidal marsh estimation models 

Tidal Marshes 

Model RMSE 

Model 1 0.78 

Model 2 0.24 

Model 3 0.22 

 
Table 3 shows the RMSE analysis on the three modeling models for tidal marsh 

classification, which shows variations in the level of prediction accuracy. Model 3, with an RMSE 
value of 0.22, shows as the model with the best accuracy, followed by Model 2 (0.24) and Model 
1 (0.78). The decrease in RMSE value from Model 1 to Model 3 reflects the improved performance 
of the model in predicting mangrove biomass. The lower RMSE value indicates that Model 3 can 
classify more accurately than Model 1 and Model 2. 
 
Performance Evaluation of Tidal Marsh Classification Models 

Furthermore, the RMSE analysis of the three modeling models for tidal marsh shows the 
accuracy of water level prediction in tidal variations. Model 3 showed the best performance with 
a low RMSE value of 0.22, significantly better than Model 1 (0.78) and Model 2 (0.24). The 
decrease in RMSE values from Model 1 to Model 3 reflects the substantial improvement in the 
model's ability to predict the biomass of objects in the tidal marsh. The first model had an AUC of 
0.66, indicating moderate performance distinguishing between positive and negative classes on 
the ROC curve. The second model showed a higher AUC of 0.85, indicating a better ability to 
separate the interest classes. Meanwhile, the third model had the highest AUC of 0.87, indicating 
excellent performance and a high ability to distinguish between positive and negative classes on 
the ROC curve. The AUC values of mangrove classification models in tidal marshes are presented 
in Table 4. 

 
                    Table 4. AUC value of mangrove classification model in tidal marshes 

Model AUC Value 

Model 1 0.66 

Model 2 0.85 

Model 3 0.87 

 
This shows that the higher the AUC value, the better the ability of the model to separate 

between positive and negative samples. Therefore, the third model has the most optimal  
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performance among the three models, while the second model also shows good performance. The 
ROC curve of tidal marsh biomass is presented in the figure 5.  

 
Figure 6. ROC curve of tidal marsh biomass (a) model 1, (b) model 2, (c) model 3  

 
Based on O’Connell et al. (2017) obtained AUC values using the tidal marsh inundation 

index (TMII) and NDWI of 0.91 and 0.81, respectively, while the findings in this study show that 
the highest AUC value is 0.87. This analysis explains that the model that maximizes the AUC has a 
high accuracy overall. The highest accuracy for each model will be obtained by the decision limit 
that creates the specificity and sensitivity points in the upper left corner of the ROC curve.   

 
Accuracy Test  

The accuracy test results of each classification based on the most critical variables, as 
shown in the table above, show a difference in accuracy. Model 1 has a lower OA of 94.2 with 
kappa, PA, and UA values of 0.918, 77.04%, and 80.96%, respectively. Increased accuracy in 
model 2 with OA, kappa, PA, and UA are 94.3%, 0.92, 78.49%, and 87.42%, respectively. 
Meanwhile, model 3 has 95%, 0.92, 80.51%, and 89.60%. Model 1 has an OA value of 94.6% and 
kappa of 0.92, PA 79%, UA 83.4%, model 2 with an OA value of 94.9% and kappa of 0.92, PA 78%, 
UA 81%, and model 3 has an OA value of 95% and kappa 0.92, PA 81, UA 89.6%. The classification 
model accuracy test is presented in Table 5.   
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Table 5. The classification model accuracy test 

 
 

 
The accuracy test results indicate that Model 3, which includes 26 parameters—B1, B2, B3, 

B4, B5, B6, B7, B8, B8A, B9, B11 (Sentinel), GNDVI, SAVI, TSAVI, (B1, B2, B3, B4, B5, B6, B7, B8, 
B8A, B9 (Spectro), NDWI, NDMI—achieves the highest overall accuracy (OA). In contrast, Model 
1, which uses 15 parameters—B1, B2, B3, B4, B5, B6, B7, B8, B8A, B9, B11 (Sentinel), GNDVI, SAVI, 
TSAVI, (B1, B2, B3, B4, B5, B6, B7, B8, B8A, B9 (Spectro)—shows the lowest OA value. Unlike 
other studies, the highest accuracy for mangrove species distribution mapping was achieved 
using spectral information divergence (SID) classification at Levels 1, 2, and 3, with overall 
accuracies of 49.72%, 22.60%, and 15.20%, respectively. The most accurate mangrove species 
mapping (Level 4) was obtained using spectral feature fitting (SFF) classification, with an overall 
accuracy of 5.08%. The low accuracy is attributed to the high species heterogeneity in the field, 
which causes pixel mixing and limited access to precise accuracy points (Rahmandhana et al., 
2022). Meanwhile, the location of the research conducted has a high level of homogeneity, which 
also significantly affects the accuracy of the mapping.  
  The findings from this study highlight the effectiveness of the Random Forest (RF) 
algorithm in classifying tidal marsh ecosystems using Sentinel-2A imagery, achieving a high level 
of accuracy in mapping the spatial distribution of these ecosystems. This result aligns with 
previous research, underscoring the value of RF in ecosystem mapping. However, it is essential 
to position these results within the broader context of remote sensing and machine learning 
applications in ecological studies. By comparing the performance of RF with other machine 
learning models used in similar research, such as Support Vector Machines (SVM), Artificial 
Neural Networks (ANN), and Xtreme Gradient Boosting, this discussion aims to emphasize both 
the strengths and limitations of the RF algorithm for tidal marsh classification. Additionally, this 
study explores how incorporating other advanced techniques, including temporal data 
integration and hybrid approaches, could further enhance the accuracy and robustness of tidal 
marsh mapping and monitoring efforts. 

Class Model 1 Model 2 Model 3 

PA UA OA 
(%) 

Kappa PA UA OA 
(%) 

Kappa PA UA OA 
(%) 

Kappa 

Tidal marsh  100 100 

94.60 0.92 

100 100 

94.90 0.92 

100 100 

95.0 0.92 

settlements 99.6 95 99.10 99 100 99 

Pond 20 31 10 12 16.30 100 

High density 
vegetation 

99.7 100 97.30 100 96.70 100 

Moderate 
density 

vegetation 

99 100 99 100 99 100 

Low density 
vegetation 

99 100 87 99 86 99 

Sea 36 29 38 31 38 30 

Seagrass 98 95 97 94 100 95 

A. lanata 100 100 100 100 100 100 

A. marina  100 96 100 96 100 96 

R. 
mucronata 

14 100 19 100 31 100 

S. alba 91 99.5 98.00 96.80 98.00 99.70 
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Research by Kang et al. (2023) has successfully mapped swamp species with acceptable 
accuracy using RF and SVM algorithms. Moreover, integrating temporal and spectral features 
from Sentinel 2A with spatial-temporal features from SAR data significantly enhances the 
capability to differentiate swamp ecosystems. The combination of optical and SAR data, or using 
either type of data alone, resulted in an increase in the kappa coefficient and overall classification 
accuracy by 0.10-0.19 and 6.04-11.61% (Zhang et al., 2021).  OA generated using Sentinel 2 
images with five vegetation indices and three bands Modified Chlorophyll Absorption in 
Reflectance Index (MCARI), inverted red-edge chlorophyll index (IRECI), NDVI, Pigment-specific 
simple ratio of chlorophyll a (PSSRa), MERIS terrestrial chlorophyll index (MTCI), B4, B5, B6) 
obtained an OA of 74% and Kappa of 0. 61 indicating that ML models with several suitable 
parameters allow for optimal mapping and classification of mangroves (Behera et al., 2021).   At 
the same time, Rahmawati et al. (2022) obtained an OA of 76.83%, with a Kappa value of 0.71 
with the parameters of vegetation index, building index, and wetness index. 

Upadhyay et al. (2020) obtained seagrass classification results using RF with an accuracy 
value of 97.16 and a Kappa value of 0.94, while the results of this study show lower accuracy 
results of around 95%. However, this accuracy value is still classified as accurate because the 
average PA and UA values are above 90%. In contrast to the research of Karang et al. (2024) the 
level of accuracy obtained was 65%. Still, this study used UAVs to classify seagrass beds at the 
species level. At the same time, Sentinel 2A imagery could only distinguish seagrass and non-
seagrass beds. Ginting et al. (2024) using RF obtained R2 between 0.49-0.64 and 0.50-0.58, with 
RMSE ranging from 18.50%-21.41% and 19.36%-20.72%. According to (Bakirman & Gumusay, 
2020) Seagrass mapping obtained a classification accuracy and kappa coefficient of 94% and 0.89 
for RF, 71% and 0.61 for RVM. Uhrin & Townsend (2016) found that  the LSU classification 
method successfully differentiated between seagrass and bare substrate, producing seagrass 
maps with overall thematic accuracy surpassing the 85% target, ranging from 86.3% to 99.0%. 
Similarly, the seagrass classification model in this study achieved accuracy levels above 90%. The 
accuracy test results, including R², RMSE, and the spatial distribution of seagrass, indicate that 
the RF model delivers superior mapping outcomes, particularly in regions with a high percentage 
of seagrass cover.  

Research by Hu et al. (2021) used artificial neural networks (ANN), namely MultiBoost 
artificial neural network (MBANN) and rotation artificial neural network (RANN), showed that 
these two methods significantly improved the performance of wetland cover classification 
compared to single artificial neural network (ANN), VGG11, and Random Forest (RF) methods. In 
addition Govil et al. (2022) mapped wetlands using Xtreme Gradient Boosting has the best 
performance on cross-site datasets with 83.20% accuracy and an Area Under Curve (AUC) score 
of 0.89. Based on previous research, when looking at the accuracy obtained, it is possible to use 
methods other than random forest; other methods, such as ANN, MBANN, and Xtreme Gradient 
Boosting, can be used to map tidal marshes. 
 

 
CONCLUSION 

This study successfully analyzed tidal marsh classification using three Random Forest 
(RF)-based modeling models with various spectral parameters and vegetation indices, identifying 
essential variables such as B1, GNDVI, BSI, and NDWI that contribute significantly to classification 
accuracy. Model 3, which integrated 26 parameters, performed best with the lowest RMSE value 
(0.22) and highest AUC (0.87), reflecting excellent accuracy in mangrove biomass classification. 
The model also achieved an % overall accuracy of 95%, with consistently high kappa values and 
user and producer accuracy. These findings suggest that proper selection and combination of 
spectral parameters in RF models can improve classification accuracy and biomass estimation, 
which aligns with previous studies highlighting the effectiveness of RF. This study underscores 
the importance of critical spectral parameters in improving the performance of classification 
models and provides a solid foundation for applications in tidal marsh ecosystem management 
and conservation. 
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